Конспект по информатике технического университета

Обзор Системы Linux. Любая UNIX-подобная операционная система состоит из ядра и некоторых системных программ. Также существуют некоторые прикладные программы для выполнения какой-либо задачи.

Ядро является сердцем операционной системы. Оно размещает файлы на диске, запускает программы и переключает процессор и другое оборудование между ними для обеспечения мультизадачности, распределяет память и другие ресурсы между процессами, обеспечивает обмен пакетами в сети и т.п. Ядро само по себе выполняет только маленькую часть общей работы, но оно предоставляет средства, обеспечивающие выполнение основных функций. Оно также предотвращает возможность прямого доступа к аппаратным средствам, предоставляя специальные средства для обращения к периферии. Таким образом, ядро позволяет контролировать использование аппаратных средств различными процессами и обеспечивать некоторую защиту пользователей друг от друга.

Системные программы используют средства, предоставляемые ядром для обеспечения выполнения различных функций операционной системы. Системные и все остальные программы выполняются на поверхности ядра, в так называемом пользовательском режиме. Существует некоторая разница между системными и прикладными программами. Прикладные программы предназначены для выполнения какой-либо определенной задачи, в то время как системные программы используются для поддержания работы системы. Текстовый процессор является прикладной программой, а программа telnet – системной, хотя зачастую граница между ними довольно смутная.

Довольно часто операционная система содержит компиляторы и соответствующие им библиотеки, хотя не обязательно все языки программирования должны быть частью операционной системы. Документация, а иногда даже игры, могут являться ее частью. Обычно состав операционной системы определяется содержимым установочного диска или ленты, хотя дело обстоит несколько сложнее, так как различные части операционной системы разбросаны по разным FTP серверам во всем мире.

Надежность и безопасность. Важнейшей характеристикой вычислительных сетей является надежность. Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратуры.

Прозрачная сеть является простым решением, в котором для взаимодействия локальных сетей, расположенных на значительном расстоянии друг от друга, используется принцип Plug-and-play (подключись и работай).

Сетевое оборудование Сетевые адаптеры – это сетевое оборудование, обеспечивающее функционирование сети на физическом и канальном уровнях. Сетевой адаптер относится к периферийному устройству компьютера, непосредственно взаимодействующему со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами. Это устройство решает задачи надежного обмена двоичными данными, представленными соответствующими электромагнитными сигналами, по внешним линиям связи. Как и любой контроллер компьютера, сетевой адаптер работает под управлением драйвера операционной системы, и распределение функций между сетевым адаптером и драйвером может изменяться от реализации к реализации.

Кодирование и декодирование данных. На этом этапе должны быть сформированы электрические сигналы, используемые для представления данных. Большинство сетевых адаптеров для этой цели используют манчестерское кодирование. Этот метод не требует передачи синхронизирующих сигналов для распознавания единиц и нулей по уровням сигналов, а вместо этого для представления 1 и 0 используется перемена полярности сигнала.

Концентратор или Hub представляет собой сетевое устройство, действующее на физическом уровне сетевой модели OSI. Отрезки кабеля, соединяющие два компьютера или какие либо два других сетевых устройства, называются физическими сегментам, поэтому концентраторы и повторители, которые используются для добавления новых физических сегментов, являются средством физической структуризации сети.

Мост (bridge), а также его быстродействующий аналог – коммутатор (switching hub), делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту моста/коммутатора. При поступлении кадра на какой-либо из портов мост/коммутатор повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат.

Коммутатор локальной сети (local-area network switch) – устройство, обеспечивающее взаимодействие сегментов одной либо группы локальных сетей. Коммутатор локальной сети, как и обычный коммутатор, обеспечивает взаимодействие подключенных к нему локальных сетей. Но в дополнение к этому он осуществляет преобразование интерфейсов, если соединяются различные типы сегментов локальной сети. Чаще всего это сети Ethernet, кольцевые сети IBM, сети с оптоволоконным распределенным интерфейсом данных.

История беспроводных технологий передачи информации началась в конце XIX века с передачей первого радиосигнала и появлением в 20-х годах ХХ века первых радиоприемников с амплитудной модуляцией. В 1930-е годы появилось радио с частотной модуляцией и телевидение. В 1970-е годы были созданы первые беспроводные телефонные системы. Сначала это были аналоговые сети, в начале 1980-х появился стандарт GSM, ознаменовавший начало перехода на цифровые стандарты как обеспечивающие лучшее распределение спектра, лучшее качество сигнала и большую безопасность. С 90-x годов ХХ века происходит укрепление позиций беспроводных сетей. Беспроводные технологии прочно входят в нашу жизнь. Развиваясь с огромной скоростью, они стимулируют создание новых устройств и услуг.

Как в системе UNIX, так и в Linux, пользовательский интерфейс не встраивается в ядро системы. Вместо этого он представляется программами пользовательского уровня. Это применяется как к текстовым, так и к графическим оболочкам. Такой стандарт делает систему более гибкой, хотя и имеет свои недостатки. Например, позволяет создавать новые интерфейсы для программ. Первоначально используемой с системой Linux графической оболочкой была система X Window System (сокращенно X). Она не реализует пользовательский интерфейс, а только оконную систему, т. е. средства, с помощью которых может быть реализован графический интерфейс. Три наиболее популярных версии графических интерфейсов на основе X – это Athena, Motif и Open Look. Понятие архитектуры и структуры ЭВМ. Архитектура фон Неймана. Архитектурой компьютера считается его представление на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы организации памяти и т.д. архитектура определяет принципы построения, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного запоминающего устройства, внешних ЗУ и периферийных устройств. Общность архитектуры различных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Подключение к системе через сеть работает несколько иначе, чем обычное подключение. Существуют отдельные физические последовательные линии для каждого терминала, через которые и происходит подключение. Для каждого пользователя, подключающегося к системе, существует отдельное виртуальное сетевое соединение, и их может быть любое количество. Однако не представляется возможным запустить отдельный процесс для каждого возможного виртуального соединения. Существуют также и другие способы подключения к системе посредством сети. Например, telnet и rlogin – основные службы в TCP/IP сетях.

Одна из наиболее полезных функций, которая может быть реализована с помощью сети, это разделение файлов через сетевую файловую систему. Обычно используется система, называемая Network File System или NFS, которая разработана корпорацией Sun. При работе с сетевой файловой системой любые операции над файлами, производимыми на локальном компьютере, передаются через сеть на удаленную машину. При работе сетевой файловой системы программа считает, что все файлы на удаленном компьютере находятся на компьютере, где она запущена. Таким образом, разделение информации посредством такой системы не требует внесения каких-либо изменений в программу.

Электронная почта является самым важным средством связи между компьютерами. Электронные письма хранятся в одном файле в специальном формате. Для чтения и отправления писем применяются специальные программы. У каждого пользователя имеется отдельный почтовый ящик, файл, где информация хранится в специальном формате, в котором хранится приходящая почта. Если на компьютер приходит письмо, то программа обработки почты находит файл почтового ящика соответствующего пользователя и добавляет туда полученное письмо. Если же почтовый ящик пользователя находится на другом компьютере, то письмо перенаправляется на этот компьютер, где проходит его последующая обработка.

Почтовая система состоит из множества различных программ. Доставка писем к локальным или удаленным почтовым ящикам производится одной программой (например, sendmail или smail), в то время как для обычной отправки или просмотра писем применяется большое количество различных программ (например, Pine или elm).Файлы почтовых ящиков обычно хранятся в каталоге /var/spool/mail.

Требования, предъявляемые к сетям. При организации и эксплуатации сети важными требованиями при работе являются следующие:

производительность;

надежность и безопасность;

расширяемость и масштабируемость;

прозрачность;

поддержка разных видов трафика;

управляемость;

совместимость.

Производительность. Производительность – это характеристика сети, позволяющая оценить, насколько быстро информация передающей рабочей станции достигнет до приемной рабочей станции.

На производительность сети влияют следующие характеристики сети:

конфигурация;

скорость передачи данных;

метод доступа к каналу;

топология сети;

технология.

Если производительность сети перестает отвечать предъявляемым к ней требованиям, то администратор сети может прибегнуть к различным приемам:

изменить конфигурацию сети таким образом, чтобы структура сети более соответствовала структуре информационных потоков;

перейти к другой модели построения распределенных приложений, которая позволила бы уменьшить сетевой трафик;

заменить мосты более скоростными коммутаторами.

Но самым радикальным решением в такой ситуации является переход на более скоростную технологию. Если в сети используются традиционные технологии Ethernet или Token Ring, то переход на Fast Ethernet, FDDI или 100VG-AnyLAN позволит сразу в 10 раз увеличить пропускную способность каналов.

С ростом масштаба сетей возникла необходимость в повышении их производительности. Одним из способов достижения этого стала их микросегментация. Она позволяет уменьшить число пользователей на один сегмент и снизить объем широковещательного трафика, а значит, повысить производительность сети. Первоначально для микросегментации использовались маршрутизаторы, которые, вообще говоря, не очень приспособлены для этой цели. Решения на их основе были достаточно дорогостоящими и отличались большой временной задержкой и невысокой пропускной способностью. Более подходящими устройствами для микросегментации сетей стали коммутаторы. Благодаря относительно низкой стоимости, высокой производительности и простоте в использовании они быстро завоевали популярность. Таким образом, сети стали строить на базе коммутаторов и маршрутизаторов. Первые обеспечивают высокоскоростную пересылку трафика между сегментами, входящими в одну подсеть, а вторые передают данные между подсетями, ограничивали распространение широковещательного трафика, решали задачи безопасности и т. д.

Виртуальные ЛВС (VLAN) обеспечивают возможность создания логических групп пользователей в масштабе корпоративной сети. Виртуальные сети позволяют организовать работу в сети более эффективно.

Количество независимых путей в сети, которые обеспечивают прохождение сигнала от источника к приемнику – связность сети.

Все узлы связи разделяются на три вида:

 оконечные пункты

  сетевые станции

 сетевые узлы

Оконечные пункты (абонентские) – пункты организации каналов связи.

Сетевые станции – пункты организации групповых трактов передачи.

Сетевые узлы – узлы формирования транзита групповых трактов передачи, а также формирования трактов более высокого порядка.

Чем больше связности, тем выше надежность сети и т.п.


На главную