Buy zithromax online buy zithromax antibioticsrx.net/prescriptions/zithromax/.
История искусства Сторонники импрессианистов Национальная Академия рисунка Ретроспективные выставки
Термоядерный синтез Реакторная технология Атомные реакторы на быстрых нейтронах Магнитное удержание плазмы Холодный термоядерный синтез Топливо для реакторов на тепловых нейтронах

Тамм Игорь Евгеньевич (1871-1971). Российский физик-теоретик, основатель научной школы, академик АН СССР (1953). Труды по квантовой физике, ядерной физике (теория обменных взаимодействий), теории излучения, физике твердого тела, физике элементарных частиц. Один из авторов теории излучении Черенкова-Вавилова. Предложил применять нагретую плазму, помещённую в магнитное поле, для получения управляемой термоядерной реакции. Лауреат Нобелевской премии, золотая медаль имени Ломоносова, государственная премия СССР.

Коррозионная стойкость материала

Коррозией называют поверхностное разрушение металлов в результате воздействия окружающей среды, в основе которого лежат химические и физико-химические (электрохимические) процессы. В настоящее время термин «коррозия» распространяют и на поверхностное разрушение под воздействием жидких металлов, хотя лежащие в основе этого воздействия процессы имеют несколько иной характер. В некоторых случаях разрушение поверхности конструкционных материалов происходит в результате её механического повреждения от истирания или ударов частиц теплоносителя (среды). Это явление называют эрозией.

Коррозия в газовых средах (теплоносителях) осуществляется в результате химического взаимодействия конструкционных материалов с газами. Это взаимодействия приводит к образованию оксидов, нитридов, гидридов и других фаз на поверхности металлов и сплавов, что обычно вызывает снижение их прочности и пластичности.

Коррозия в воде, паро-водяной смеси и перегретом паре может осуществиться двумя путями. При сравнительно низких температурах происходит электрохимическое взаимодействие материалов со средой. При повышенных температурах в перегретом паре наряду с электрохимическими процессами существенную роль может играть и химическое взаимодействие. Электрохимическая коррозия имеет место во влажности воздухе, причём процессы идут в тонком слое влаги, осаждающейся на металле из воздуха. Такой вид коррозии называют атмосферной коррозией.

Коррозия в органических теплоносителях относится к химическому виду коррозии, так как разрушения материала происходит в результате химического взаимодействия материала с продуктами термического и радиационного разложения углеводородов, с примесными газами (кислородом).

Коррозия в жидкометаллических теплоносителях происходит в результате равномерного или избирательного растворения отдельных компонентов конструкционных материалов. При этом часто образуется пористость, жидкие металлы проникают в приповерхностные слои. Коррозия в жидкометаллических средах существенно зависит от чистоты как конструкционных материалов, так и среды.

Наличие газообразных продуктов деления ядерного топливного (цезия, теллура, иода) и кислорода в зазоре между топливом и оболочкой ТВЭЛа вызывает явление, известное как химическое взаимодействие топлива и оболочки, приводящее к разрушению внутренней поверхности вследствие фронтальной и межкристаллитной коррозии и переноса химических элементов материала оболочки в топливо. Эти виды коррозионного разрушения существенно зависят от: 1) условий облучения (глубины выгорания топлива, линейной тепловой нагрузки ТВЭЛа, градиента температуры в топливе и оболочке); 2) характеристик топлива (состава, отношения числа атомов металла -О/Ме, химического потенциала кислорода в зазоре между топливом и оболочкой, плотности); 3) параметров материала оболочки (химического состава, предварительной термомеханической обработки, уровня внутренних напряжений и др.).

Химическую и электрохимическую коррозию конструкционных материалов в зависимости от среды называют: газовой, в электролитах, в неэлектролитах, атмосферной, контактной и т. д. Коррозия в жидких средах Стабильность материала в условиях облучении Стадия накопления радиационных дефектов по мере увеличения флюенса представляется более управляемой, чем стадия их образования. Аннигиляция дефектов за счёт взаимной рекомбинации и ухода на стоки усиливается по мере увеличения температуры облучаемого материала С ростом энергии нейтрона эффект радиационного упрочнения увеличивается, а с увеличением температуры обучаемого материала выше 0,25Тпл снижается и при Т>0,6Тпл практически отсутствуют. Высокотемпературному радиационному охрупчиванию подвержены тугоплавкие металлы, коррозионно-стойкие стали и никелевые сплавы при температурах выше 0,45Тпл. Инкубационный уровень флюенса у чистых металлов (для Ni - это Ф=4*10) м меньше, чем у сплавов (для стали 1026 м-2); зависимость распухания от температуры имеет сложный характер с максимумом при (0,4 - 0,45)Тпл, причём распухание установлено в широком интервале температур от 0,25 до 0,55Тпл Примеси внедрения при оптимальной концентрации способствуют ускорению рекомбинации вакансий и примесных атомов, отравляют поры как стоки вакансий, дислокационные петли и дислокации, тормозя перемещение последних Под явлением радиационного роста понимается анизотропное изменение размеров кристаллов в условиях облучения без приложения внешней нагрузки.

6 сентября 1988 г. Архангельская область, СССР. Последний советский испытательный взрыв, под названием "Рубин-1". Всего в СССР было произведено около 115 взрывов. РФ-81; Казахстан - 29; Узбекистан-2; Украина-2; Туркмения - 1 Средняя мощность используемых при взрывах устройств составила 14,3 кт, а без учета 2 самых мощных взрывов (140 и 103кт)-12,5кт. Некоторые из этих взрывов были мирными, т.е. они проводились для каких-то общественных и промышленных целей. Например, для: поиска полезных ископаемых, создания каналов и водохранилищ, гашения аварийных газовых фонтанов и т.п.
Учебные пособия для студентов технических университетов