Кинематика Примеры решения задач Момент инерции

Закон изменения импульса механической системы. Закон сохранения импульса утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. Закон сохранения импульса тела: импульс тела сохраняется, если импульс равнодействующей всех сил, действующих на это тело, равен нулю. Это возможно в случаях, когда -на тело не действуют силы вообще или -равнодействующая всех сил, действующих на тело, равна нулю, или -промежуток времени , в течение которого мы наблюдаем за состоянием тела, очень мал (стремится к нулю ), а равнодействующая всех сил, действующих на тело, ограничена по модулю (не бесконечно большая).

• Законы Кеплера.

1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

2. Радиус-вектор планеты в равные времена описывает одинаковые площади.

3. Квадраты периодов обращения любых двух планет относятся как кубы больших полуосей их орбит:

Законы Кеплера справедливы также для движения спутников вокруг планеты. Вынужденные колебания – это колебания, которые происходят в колебательной системе под действием внешней вынуждающей силы

• Относительная деформация при продольном растяжении или сжатии тела

где ε — относительное удлинение (сжатие); x — абсолютное удлинение (рис. 4.1); l — начальная длина тела.

 

Второе начало термодинамики. Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, а в окружающей среде и в системе при этом не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.
Относительная деформация при сдвиге определяется из формулы

Рис. 4.1 Рис. 4.2

где — относительный сдвиг; Δs — абсолютный сдвиг параллельных слоев тела относительно друг друга (рис. 4.2); h — расстояние между- слоями; — угол сдвига. (Для малых углов)

• Напряжение нормальное

где Fynp — упругая сила, перпендикулярная поперечному сечению тела; S — площадь этого сечения.

Напряжение тангенциальное

где Fynp — упругая сила, действующая вдоль слоя тела; S — площадь этого слоя.

• Закон Гука для продольного растяжения или сжатия

 или  ,

где k — коэффициент упругости (в случае пружины — жесткость); Е — модуль Юнга.

Закон Гука для сдвига

  , или ,

где G — модуль поперечной упругости (модуль сдвига).

• Момент, закручивающий на угол φ однородный круглый стержень,

,

где С — постоянная кручения.

• Работа, совершаемая при деформации тела,

• Потенциальная энергия растянутого или сжатого стержня

  , или  , или , где V — объем тела.

Примеры решения задач

Пример 1. Определить вторую космическую скорость υ2 ракеты, запущенной с поверхности Земли.

Примечание. Второй космической (или параболической) скоростью υ2 называется минимальная скорость, которую нужно сообщить телу, чтобы оно удалилось с поверхности Земли в бесконечность (при этом сопротивление воздуха в расчет не принимается и предполагается, что на тело действует только поле тяготения Земли).

Решение. При удалении тела массой т в бесконечность его потенциальная энергия возрастает за счет убыли кинетической энергии и в бесконечности достигает максимального значения, равного нулю. Согласно определению второй космической скорости, кинетическая энергия в бесконечности также равна нулю. Таким образом, в бесконечности Т∞=0 и П∞ =0. В соответствии с законом сохранения энергии в механике

Пример 3. Найти выражение для потенциальной энергии П гравитационного взаимодействия Земли и тела массой m, находящегося на расстоянии r от центра Земли за пределами ее поверхности. Построить график П(r).

Решение. Потенциальная энергия в поле консервативных сил (гравитационные силы консервативны) связана с силой следующим соотношением: Потенциальная энергия гравитационного взаимодействия тел, бесконечно удаленных друг от друга, принимается равной нулю

Пример 4. В гравитационном поле Земли тело массой m перемещается из точки 1 в точку 2 (рис. 4.5). Определить скорость v2 тела в точке 2, если в точке 1 его скорость

Ускорение свободного падения g считать известным.

Решение. Система тело — Земля является замкнутой, в которой действует

Пример 5. Вычислить работу А12 сил гравитационного поля Земли при перемещении тела массой m=10 кг из точки 1 в точку 2 (рис. 4.5). Радиус R земли и ускорение g свободного падения вблизи поверхности Земли считать известными.

Решение. Для решения задачи воспользуемся соотношением между работой А и изменением ΔП потенциальной энергии. Так как силы системы — гравитационные — относятся к силам консервативным, то работа сил поля совершается за счет убыли потенциальной энергии, т. е.   (1) где П1 и П2 — потенциальные энергии системы тело — Земля соответственно в начальном и конечном ее состояниях.

Решение. 1. Нормальное напряжение материала растянутого стержня выражается формулой σ=F/S, где F — сила, действующая вдоль оси стержня. В данном случае F равна силе тяжести mg и поэтому можем записать

Сделав вычисления, найдем

2. Абсолютное удлинение выражается формулой

где Е — модуль Юнга.

Закон сохранения импульса и однородность пространства В основе закона сохранения импульса лежит однородность пространства, т. е. одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат). Одинаковость следует понимать в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения и скоростей частиц, не изменяет механические свойства системы. Момент силы относительно неподвижной точки и оси. Моментом силы относительно неподвижной оси Z называется скалярная величина Mz , равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z.
Физические основы механики Примеры решения задач