Анализ электрических цепей Энергетические процессы проверка амплитудно-частотных и фазочастотных характеристик Энергетические процессы в последовательном колебательном контуре Топологические матрицы

Анализ электрических цепей Лекции и лабораторные работы

Устройство асинхронного двигателя Асинхронный двигатель состоит из статора, ротора и подшипниковых щитов. Статор – неподвижная часть двигателя – имеет цилиндрическую форму. Он состоит из корпуса 1, сердечника 2 и обмотки 3. Корпус литой стальной или чугунный. Магнитопровод статора собирается из тонких листов электротехнической стали. На внутренней поверхности он имеет пазы, в которые укладывается обмотка статора. Ротор асинхронного двигателя – вращающаяся часть – состоит из стального вала 4, магнитопровода 5, набранного из листов электротехнической стали с выштампованными пазами. Обмотка ротора бывает короткозамкнутой или фазной. Короткозамкнутая обмотка выполняется из алюминиевых или медных стержней, замкнутых с обоих торцов ротора накоротко.

Правила составления узловых уравнений.

Формирование Yij.

Собственная  проводимость Yii i-гo узла - это сумма проводимостей всех ветвей, подключенных к данному узлу.

Взаимная проводимость i-гo и j-го узлов — это сумма проводимостей всех ветвей, включенных непосредственно между этими узлами, взятая с противоположным знаком. Если в цепи отсутствуют ветви, включенные непосредственно между i-м и j-м узлами, то Yij = 0.

Для линейной электрической цепи состоящей только из сопротивлений, емкостей, индуктивностей и независимых источников тока матрица узловых проводимостей квадратная и симметричная относительно главной диагонали.

Формирование Ui0.

Это матрица-столбец неизвестных напряжений узлов. Электрические цепи переменного тока Основные понятия об однофазном переменном токе.

2. Формирование Ji0.

Узловым током Ji0 i-го узла называется алгебраическая сумма токов всех источников тока, подключенных к данному узлу. Если ток какого-либо источника тока направлен к i-му узлу, то он входит в Ji0 со знаком плюс, если ток направлен от i-го узла, то он входит в знаком минус.

Решая систему узловых уравнений любым из методов, можно найти все неизвестные узловые напряжения цепи цепи.

Например, выражение для напряжения k-го узла при использовании формулы Крамера:

где — определитель системы уравнений;

ij— алгебраическое дополнение элемента Yij этого определителя.

Если цепь содержит независимые источники напряжения, то следует: заменить источники напряжения независимыми источниками тока с помощью эквивалентных преобразований, либо составить систему узловых уравнений с учётом того, что не все узловые напряжения будут независимы: узловые напряжения двух узлов, между которыми включён источник напряжения, будут отличаться только на напряжение этого источника. Количество неизвестных узловых напряжений сокращается при этом на число независимых источников напряжения. Матрица контурных проводимостей в этом случае будет не квадратной: число столбцов будет равно числу независимых узлов, а число строк — числу неизвестных независимых узловых напряжений.

Метод наложения позволяет рассчитывать реакцию цепи на сложное воздействие. Реакция линейных цепей на произвольное внешнее воздействие, представляющее собой линейную комбинацию более простых воздействий, равна линейной комбинации реакций, вызванных каждым из простых воздействий в отдельности.

Таким образом, ток или напряжение любой ветви линейной электрической цепи, содержащей наряду с пассивными элементами зависимые и независимые источники тока и напряжения, равны сумме частичных токов или напряжений, вызванных действием каждого независимого источника в отдельности.

Расчетная часть

3.1. Определите комплексные действующие значения токов в ветвях и напряжений на элементах цепи методами:

а) контурных токов;

б) узловых напряжений;

в) наложения (в ветви C1R3).

R1 L1  L2 R2 

  Принципиальная схема цепи изображена на рис. 3.1, эквивалентная схема замещения - на рис. 3.2. Параметры элементов для каждого лабораторного стенда приведены в таблице, находящейся в лаборатории. Начальную фазу напряжений U1 и U2 примите равной 0.

Рис. 3.1. Принципиальная схема исследуемой цепи

3.2. Проверьте правильность расчетов по балансу мощностей.

3.3. По результатам расчетов постройте векторные диаграммы токов и напряжений на элементах.

3.4. Ознакомьтесь с содержанием  эксперимента и продумайте порядок его выполнения.

3.5. Докажите, что разность фаз между UR2 и (-Е2) равна разности фаз между UR2 и E1.

Рис. 3.2. Эквивалентная схема исследуемой цепи

4.1. Измерьте величины сопротивлений R1, R2,R3, RL1, RL2, RL3, сравните их с табличными данными.

Проверьте выполнение теоремы наложения для ветви C1R3. 4.7.1. Замените источник Е1 перемычкой. Установите Е2 равным заданной в таблице величине. Измерьте действующее значение тока I3' и сдвиг фаз между UR3 и Е2 (рис. 3.6).

Обработка результатов 5.1. По результатам пп. 3.4 - 3.6 рассчитайте комплексные действующие значения токов и напряжений на элементах цепи (рис. 3.1).

Индуктивно-связанные цепи 1. Цель работы Овладение методами расчета и измерения параметров цепей с взаимной индуктивностью. Экспериментальное определение основных параметров трансформаторов.

При гармоническом внешнем воздействии уравнения, описывающие трансформатор имеют вид:

3.1. Выведите расчетные формулы для обработки экспериментальных данных, которые будут получены при выполнении пунктов 3.1 и 3.2 (формулы для расчета индуктивности катушек L1 и L2, и взаимной индуктивности М).

Составьте таблицы сравнения результатов, полученных в ходе подготовки расчетным путем и измеренных при выполнении работы.

Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т.е. с угловой скоростью, отличной от угловой скорости поля. Асинхронные двигатели являются самыми распространенными из всех двигателей. Их преимущества состоят в простоте устройства, большой надежности и сравнительно низкой стоимости. Широко применяются трехфазные асинхронные двигатели, предложенные М.О. Доливо-Добровольским в 1888 г. Они выполняются мощностью от долей ватта до тысяч киловатт, с частотой вращения от 500 до 3000 об/мин и напряжением до 10 кВ. Однофазные асинхронные двигатели используют для привода бытовых приборов, электроинструмента, в схемах автоматики. Они питаются от однофазной цепи и имеют мощность, как правило, не выше 0,5 кВт.


Правила составления узловых уравнений