Анализ электрических цепей Энергетические процессы проверка амплитудно-частотных и фазочастотных характеристик Энергетические процессы в последовательном колебательном контуре Топологические матрицы

Анализ электрических цепей Лекции и лабораторные работы

Однофазный асинхронный двигатель Принцип действия. Однофазный асинхронный двигатель – двигатель, на статоре которого однофазная обмотка, а на роторе – короткозамкнутая обмотка. Однофазный ток статора создает пульсирующий магнитный поток, изменяющий свое направление с частотой напряжения сети. Этот поток все время направлен по осевой линии полюсов и изменяется во времени по синусоидальному закону

Связанные колебательные контуры

1. Цель работы

Практическое знакомство и проверка правильности соотношений, описывающих амплитудно-частотные характеристики (АЧХ) двух индуктивно связанных контуров, изучение способов настройки системы связанных контуров.

2. Основные расчетные соотношения

На практике применяются колебательные контуры, энергия между которыми передается с использованием явления взаимной индукции. В таких контурах существует не один, а несколько резонансов.

Для характеристики «неполноты» включения реактивного элемента используется коэффициент включения:

Коэффициент включения изменяется в пределах от нуля до единицы. В последнем случае рассматриваемый колебательный контур вырождается в параллельный колебательный контур основного вида.

В связи с тем, что одна из ветвей параллельного колебательного контура с неполным включением реактивного элемента представляет собой последовательное включение конденсатора и индуктивной катушки, в контуре этого вида наряду с резонансом токов имеет место резонанс напряжений.

Конструктивной особенностью колебательного контура этого вида является наличие в нем индуктивной катушки с отводом или со скользящим контактом, разделяющим катушку на две секции

Рассмотрим особенности частотных характеристик параллельного колебательного контура с неполным включением индуктивности и влияние коэффициента включения индуктивности рь на параметры контура. Комплексное входное сопротивление рассматриваемого контура определяется выражением

  

При высокой добротности элементах на частотах, близких к резонансной, входное сопротивление может быть определено по приближённой формуле:

  

  

Частота резонанса токов параллельного колебательного контура 2-го вида не зависит от коэффициента включения индуктивности и совпадает с резонансной частотой последовательного колебательного контура, построенного из тех же элементов, что и рассматриваемый колебательный контур.

Частота резонанса напряжений 0 определяется только индуктивностью второй ветви L2 и, следовательно, зависит от коэффициента включения индуктивности:

  

С уменьшением коэффициента включения индуктивности частота 0 уменьшается, оставаясь большей, чем p.

Cопротивление рассматриваемого контура на частоте резонанса токов:

Здесь R = R1 + R2 - суммарное сопротивление потерь,

 - характеристическое сопротивление рассматриваемого контура, равное характеристическому сопротивлению последовательного колебательного контура, составленного из тех же элементов,

R0 = 2/R — резонансное сопротивление параллельного контура основного вида.

Таким образом, резонансное сопротивление контура с неполным включением индуктивности R0 (pL) зависит от коэффициента включения и меньше, чем резонансное сопротивление контура основного типа R0.

На частотах ниже p входное сопротивление контура определяется в основном сопротивлением ветви 1 и имеет резистивно-индуктивный характер. На частоте резонанса токов сопротивление контура достигает максимального значения R0 (pL) и имеет резистивный характер. На частотах выше p сопротивление контура определяется в основном параметрами ветви 2, причем при p <  <0 сопротивление контура имеет резистивно-емкостной характер, а на частотах выше частоты резонанса напряжений резистивно-индуктивный. На частоте резонанса напряжений входное сопротивление контура имеет резистивный характер и достигает минимального значения, определяемого сопротивлением потерь второй ветви.

Добротность параллельного колебательного контура с неполным включением индуктивности не зависит от коэффициента включения и равна добротности последовательного колебательного контура, составленного из тех же элементов.

Колебательный контур этого типа по своим свойствам в значительной степени подобен параллельному колебательному контуру с неполным включением индуктивности. Используя эквивалентную схему контура, нетрудно показать, что частота резонанса токов p, характеристическое сопротивление  и добротность Q параллельного колебательного контура с неполным включением емкости совпадают с резонансной частотой, характеристическим сопротивлением и добротностью последовательного колебательного контура, построенного из тех же элементов и, следовательно, обладающего теми же суммарной емкостью

Частота резонанса напряжений 0 рассматриваемого контура определяется параметрами элементов второй ветви

и зависит от коэффициента включения емкости.

Резонансное сопротивление контура с неполным включением емкости так же, как и резонансное сопротивление контура с неполным включением индуктивности, пропорционально квадрату коэффициента включения.

Итак, важнейшие параметры параллельного колебательного контура с неполным включением реактивного элемента (частота резонанса токов, характеристическое сопротивление и добротность) не зависят от коэффициента включения. Резонансное сопротивление контура является функцией pL или pС.

Указанная особенность параллельного колебательного контура широко используется на практике при согласовании его с источником энергии. Согласование осуществляют путем надлежащего выбора значения коэффициента включения, причем при изменении коэффициента включения настройка контура и ширина его полосы пропускания, определяемые эффективной добротностью, не изменяются.

Наличие ярко выраженного минимума в АЧХ контура с неполным включением может быть использовано для подавления колебаний, частота которых близка к 0 рассматриваемого контура.

Для системы связанных контуров (рис. 1) рассчитайте емкости С1 и С2, считая, что оба контура настроены на резонансную частоту fр.

Настройка контуров. Для получения качественных результатов необходимо соблюдать аккуратность: после настройки контуров нельзя отключать от схемы измерительные приборы (или подключать дополнительные), изменять емкости контуров.

Пуск переключением обмотки статора применяется для двигателей, работающих при соединении обмоток статора в треугольник. При пуске обмотка статора с помощью переключателя соединяется в звезду. В результате линейный пусковой ток уменьшается примерно в три раза, пусковой момент также уменьшается в три раза. Если пусковой момент достаточен для разгона электропривода, то такой пуск допустим. После пуска обмотку статора переключают на схему треугольника, и двигатель работает в нормальном режиме.


Правила составления узловых уравнений