Центральное проецирование Параллельное проецирование Комплексный чертеж точки Способ вражения Проекции прямого угла Взаимно перпендикулярные плоскости Метрические задачи Комплексные задачи Способ вспомогательных сфер


Образование сферы Так создается каркас поверхности, состоящей из множества окружностей, плоскости которых расположены перпендикулярно оси  i. Эти окружности называются параллелями; наименьшая параллель называется горлом, наибольшая – экватором. Теоретическая механика Основные кинематические параметры Траектория Линию, которую очерчивает материальная точка при движении в пространстве, называют траекторией. Траектория может быть прямой и кривой, плоской и пространственной линией.

Конспект лекций по начертательной геометрии

КОМПЛЕКСНЫЕ ЗАДАЧИ


ОБЩИЕ ПОЛОЖЕНИЯ

Комплексными называются задачи, в которых на искомое наложены два условия и более. Их решение выполняется по следующей общей схеме:
1) вводятся вспомогательные геометрические фигуры (множества), каждая из которых, в отдельности удовлетворяет одному из условий, наложенных на искомое;
2) определяется искомое как результат пересечения введенных в задачу вспомогательных множеств.
При решении конкретной комплексной задачи первый пункт приведенной выше общей схемы необходимо расшифровать, т. е. точно указать, сколько и какие именно вспомогательные множества (по виду и положению) должны быть введены для определения искомого. Этот вопрос может быть решен только после проведения анализа условий задачи.
Анализ является первым этапом решения задачи. Он преследует следующие цели: Кинематические соотношения во фрикционных передачах
а) выявить искомое, изучить заданные геометрические фигуры и представить их пространственное расположение;
б) установить взаимосвязь искомого с каждой из заданных геометрических фигур и определить условия, которым он должен удовлетворять; каждое выявленное условие должно быть однозначным;
в) выявить геометрические фигуры, каждая из которых является множеством элементов, удовлетворяющих одному из условий, наложенных на искомое; количество множеств равно количеству условий.

Таким образом, анализ позволяет наметить содержание и последовательность пространственных операций, необходимых для определения искомого, т. е. составить алгоритм решения задачи.
Вторым этапом решения задачи является исследование. Исследование проводится с целью выявления условий существования решения и числа решений. Выше было указано, что искомое определяется как результат пересечения некоторого числа вспомогательных геометрических фигур (множеств). Поэтому при исследовании необходимо иметь в виду следующее: Последовательное вращение прямой общего положения вокруг двух осей, перпендикулярных плоскостям проекций до проецирующего положения можно осуществить сначала поворотом вокруг горизонтально-проецирующей оси до положения уровня

1. Две алгебраические поверхности порядков q1 и q2 пересекаются в общем случае по кривой порядка q1 x q2. В некоторых частных случаях эта кривая распадается на кривые более низких порядков.
2. Алгебраическая кривая порядка m пересекает произвольную плоскость в m точках.
3. Три алгебраические поверхности порядков q1, q2 и q3 пересекаются в общем случае в q1 x q2 x q3 точках, и, следовательно, поверхность порядка q и линии порядка m пересекаются в общем случае в q x m точках.

Примечание. В числе указанных точек пересечения могут быть мнимые и совпавшие.
Только после составления алгоритма и исследования задачи можно приступать к третьему заключительному этапу ее решения - построению на комплексном чертеже, - т. е. к графической реализации алгоритма. При этом следует выполнить в установленной алгоритмом последовательности известные из предыдущих разделов курса элементарные построения, не задумываясь уже над расположением заданных и возникающих в пространстве геометрических фигур.
Решая ту или иную задачу на комплексном чертеже, нужно выбрать такой путь, который позволит найти искомое при наименьшем количестве графических построений. Решение в этом смысле, как правило, будет и более точным. Выбор рационального пути не зависит от алгоритма решения задачи и является вопросом, связанным только с построением. При решении комплексных задач приходится пользоваться множествами [1].

 

Пересечение сферы фронтально - проецирующей плоскостью В зависимости от положения плоскости по отношению к плоскостям проекций, сложность решения   позиционной задачи, по определению линии пересечения ее с поверхностью существенно меняется. Наиболее простым представляется случай, когда плоскость проецирующая. Рассмотрим решение задачи   по определению линии пересечения сферы фронтально - проецирующей плоскостью Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно. Сопротивление материалов Построение эпюр поперечных сил и изгибающих моментов.
[an error occurred while processing this directive]