Центральное проецирование Параллельное проецирование Комплексный чертеж точки Способ вражения Проекции прямого угла Взаимно перпендикулярные плоскости Метрические задачи Комплексные задачи Способ вспомогательных сфер


Винтовые поверхности образуются винтовым движением некоторой линии – образующей. Под винтовым движением понимается совокупность двух движений: поступательного параллельно некоторой оси, и вращательного, вокруг той же оси. В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину. Пересекая призму вспомогательной плоскостью ?, перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения - треугольника Теоретическая механика Скорости и ускорения точек вращающегося тела

Конспект лекций по начертательной геометрии

Комплексные чертежи геометрических фигур

2.2.3 КОМПЛЕКСНЫЕ ЧЕРТЕЖИ КРИВЫХ ЛИНИЙ

Общие определения и понятия

Все непрямые и не ломаные линии называются кривыми. Кривые линии разделяются на два вида:

1) плоские кривые, т. е. такие, все точки которых располагаются в одной плоскости;
2) пространственные кривые (линии двоякой кривизны), т. е. такие, точки которых не принадлежат одной плоскости.

 Если закон перемещения точки может быть выражен аналитически в виде уравнения, то образующаяся при этом линия называется закономерной, в противном случае - незакономерной, или графической. Закономерные кривые линии делятся на алгебраические, определяемые алгебраическими уравнениями (эллипс, парабола, гипербола и др.), и трансцендентные, определяемые трансцендентными уравнениями (синусоида, циклоида, спираль Архимеда и др.). Важной характеристикой алгебраической кривой является ее порядок (трансцендентные кривые порядка не имеют). С алгебраической точки зрения порядок кривой линии равен степени ее уравнения, с геометрической - наибольшему числу точек пересечения кривой с прямой линией для плоских кривых и с произвольной плоскостью для пространственных. В число точек пересечения включаются как действительные точки, так и совпавшие и мнимые. Например, эллипс - кривая второго порядка, имеет уравнение x2/a2 + y2/b2 = 1 второй степени, пересекается с прямой максимум в двух точках. Пример. Найти точки пересечения прямой АВ с поверхностью конуса. Проведем через прямую АВ вспомогательную плоскость ABS, проходящую через вершину конуса. Соединим прямыми концы отрезка АВ (или его промежуточные точки) с проекциями вершины конуса и найдем горизонтальные следы прямых SA и SB.
Прямую линию, имеющую уравнение первой степени ax + by + c = 0 (с произвольной прямой пересекается в одной точке), можно рассматривать как линию первого порядка. Кривыми второго порядка являются также окружность, парабола, гипербола. Примерами кривых третьего порядка могут служить строфоида, Декартов лист, циссоида; четвертого - лемниската Бернулли, кардиоида, улитка Паскаля [12].
Начертательная геометрия изучает кривые линии и различные операции с ними по их проекциям на комплексном чертеже. Построение проекций кривой линии сводится к построению проекций ряда ее точек. В общем случае проекции кривой линии являются также кривыми линиями. Кривая линия определяется двумя своими проекциями.

Секущая, касательная, нормаль

Прямая, пересекающая кривую линию в одной, двух и более точках, называется секущей (прямая m на рис. 2.2.16).
pr2_26.JPG Рис 2.2.16pr2_9.JPG Рис 2.2.17

Касательной прямой t в данной точке А линии l называется предел, к которому стремится секущая (АВ), когда точка В, оставаясь на линии l, стремится к точке А (рис. 2.2.16, 2.2.17). Касательная к прямой линии согласно этому определению есть сама прямая Нормалью к кривой l называется прямая n, перпендикулярная к l и проходящая через точку касания А.

Проекционные свойства плоских кривых линий

1. Секущая m к кривой l проецируется в секущую m1 к проекции l1.
2. Касательная t к кривой l проецируется в касательную t1 к проекции l1.
3. Бесконечно удаленные точки кривой проецируются в бесконечно удаленные проекции ее точек.
4. Число точек пересечения кривых равно числу точек пересечения их проекций.
На основании перечисленных свойств можно сделать выводы:
1) порядок плоской алгебраической кривой при проецировании не изменяется;
2) эллипс может проецироваться в эллипс или окружность, окружность - в окружность или эллипс, парабола - в параболу, гипербола - в гиперболу.
Вышеперечисленные проекционные свойства плоских кривых линий вытекают из инвариантов параллельного проецирования (гл. 1).

Кривые второго порядка

Кривая второго порядка имеет уравнение второй степени в декартовой системе координат. С прямой линией пересекается в двух точках (действительных, совпавших или мнимых).
Эллипс - геометрическое место точек, сумма расстояний которых до двух заданных точек (фокусов) - величина постоянная, равная | 2а | (длине большой оси эллипса). Эллипс не имеет несобственных точек.
Парабола - геометрическое место точек, равноудаленных от данной точки F (фокуса) и данной прямой d (директрисы). Парабола имеет одну несобственную точку.
Гипербола - геометрическое место точек, разность расстояний которых до двух заданных точек (фокусов) - величина постоянная, равная | 2а | (расстоянию между вершинами гиперболы). Гипербола имеет две несобственные точки, по одной на каждой асимптоте.
Кривые второго порядка - эллипс, окружность, парабола и гипербола - могут быть получены при пересечении конуса плоскостью и поэтому называются коническими сечениями.

Пространственные кривые линии

Из закономерных пространственных кривых наибольшее практическое применение находят винтовые линии, в частности, цилиндрическая винтовая линия (рис. 2.2.18).
pr2_27.JPG Рис 2.2.18

Цилиндрическая винтовая линия представляет собой пространственную кривую, описываемую точкой, совершающей равномерно-поступательное движение по образующей цилиндра вращения, которая в свою очередь вращается вокруг оси цилиндра с постоянной угловой скоростью (рис. 2.2.18). Величина Р, на которую поднимается точка за один оборот образующей, называется шагом винтовой линии.
Горизонтальная проекция винтовой линии является окружностью, а фронтальная - синусоидой. На развертке цилиндрической поверхности винтовая линия изобразится в виде прямой. На рис.2.2.19 показан процесс формообразования винтовой линии

wint.JPG

Угол называется углом подъема винтовой линии. Этот угол равен углу наклона касательной t в любой точке винтовой линии к плоскости, перпендикулярной ее оси. Цилиндрическая винтовая пиния, подобно прямой и окружности, обладает свойством сдвигаемости.
Свойство сдвигаемости состоит в том, что каждый отрезок линии может сдвигаться вдоль нее, не подвергаясь деформации. Это свойство винтовой линии лежит в основе работы винтовых пар (винт-гайка). Винтовая линия является геодезической на цилиндрической поверхности.

pr2_2.JPGРис. 2.2.20

Геодезической называется линия, принадлежащая поверхности и кратчайшая из всех линий, которые можно провести между двумя точками поверхности. Кроме цилиндрической винтовой линии, геодезическими линиями также являются прямая на плоскости, окружность большого круга на сфере и др. Геодезическая линия изображается на развертке поверхности в виде прямой линии.
На рис. 2.2.20 показаны примеры применения винтовых линий в технической практике.

 

 

Поверхность В школьном курсе геометрии рассматриваются плоскости, многогранники, а также некоторые кривые поверхности. Каждая из кривых П. определяется специальным способом, чаще всего как множество точек, удовлетворяющих некоторым условиям. Например, поверхность шара - множество точек, отстоящих на заданном расстоянии от данной точки. Понятие "Поверхность" лишь поясняется, а не определяется. Например, говорят, что поверхность есть граница тела или след движущейся линии. Теоретическая механика Сопротивление материалов Иметь представление о видах расчетов в сопротивлении материалов, о классификации нагрузок, о внутренних силовых факторах и возникающих деформациях, о механических напряжениях.
[an error occurred while processing this directive]