Примеры решения задач контрольной (курсовой) работы по математике

Метод интегрируемых комбинаций  – СДУ второго порядка сводится к ДУ , откуда   и из первого уравнения , т.е.  – общее решение СДУ.

СДУ в нормальной форме  может быть представлена в виде , симметричном относительно переменных. Так, например, симметричная форма записи СДУ

Достаточные условия существования единственного решения задачи Коши для СДУ вида

Свойства решений СОЛДУ

Рассмотрим вектор-функции  и . При каждом   и  линейно зависимы, но ни одна из этих вектор-функций не получается из другой умножением на число, т.е. на  эти функции линейно независимые.

Теорема о структуре общего решения СОЛДУ

Некоторые свойства матриц ФСР СОЛДУ Общее решение СОЛДУ  запишется , где  – произвольный вектор, . При этом задача Коши  имеет единственное решение , поскольку из соотношения  имеем .

Пример Решить СДУ 

Решить СОЛДУ .

Решить СОЛДУ  .

Метод Эйлера

Аналогично однородным линейным дифференциальным уравнениям с постоянными коэффициентами для СОЛДУ , где
  – const, можно попытаться найти решение в виде , где
 – постоянный вектор,  – постоянное число. Подставляя эту вектор-функцию в СОЛДУ, получаем  или , т.е.  должно быть собственным значением (сокр. с.з.), а   – соответствующим ему собственным вектором (сокр. с.в.) матрицы .

ПРИМЕР 11. Решить СОЛДУ .

Решение. Для матрицы  собственные значения – корни характеристического уравнения

.

Для  с.в. матрицы – вектор   – находим, решая систему линейных алгебраических уравнений

. Придавая некоторое произвольное значение одной переменной, найдем значение другой: например, . Итак,  – решение рассматриваемой СОЛДУ.

Для  аналогично получаем , например, и соответственно  – решение СОЛДУ. Количество решений точно равно порядку СДУ, они линейно независимы, поскольку определитель, составленный из этих решений, не обращается в ноль, поэтому общее решение СОЛДУ имеет вид .

Для получения ФСР СОЛДУ -го порядка нужно знать точно "" линейно независимых решений; в нашем случае количество решений СОЛДУ п/к определяется количеством и структурой корней характеристического уравнения

.  (15)

Возможны следующие ситуации.

1. Корни уравнения (15) действительные и попарно различные . Находим  решений , , . Определитель Вронского для этих решений , причем

, поскольку собственные векторы для различных попарно собственных значений матрицы линейно независимы. Итак, общее решение СОЛДУ п/к  в рассматриваемом случае запишем

,

где фундаментальная матрица строится из столбцов .


На главную