Примеры решения задач контрольной (курсовой) работы по математике

Теорема о существовании всех частных производных ФНП

Типовые расчеты (курсовые задания) по математике Интегрирование биноминальных дифференциалов Существует несколько способов интегрирования такого рода функций. В зависимости от вида выражения, стоящего под знаком радикала, предпочтительно применять тот или иной способ.

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Дифференциалы высших порядков ФНП Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка.

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Формула Тейлора для ФНП записывается в дифференциальной форме по аналогии с формулой Тейлора для функции одной переменной Формула Тейлора позволяет вычислять приближенно значение функции с любой наперед заданной точностью. Погрешность может быть установлена с помощью оценки остаточного члена.

Дифференцирование сложной ФНП Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений Интегрирование функций нескольких переменных. Двойной интеграл и его свойства.

Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.

Диффенцирование неявно заданной функции

Найти частные производные функции , заданной неявно уравнением  в окрестности точки .

Дифференцируемость ФНП

Пусть  определена в .

ФНП  называется дифференцируемой в точке , если выполнены соотношения

,

где  – приращение вектора аргументов;  – полное приращение функции  в точке  соответственно ; .

ПРИМЕР 1. Показать по определению дифференцируемость функции  в произвольной точке .

Решение. Обозначим , , . Для произвольного  
приращение функции имеет вид 

.

Здесь вектор , функция , причем

, где ,  – соответственно углы между вектором  и осями координат .

ФНП , заданная на области , называется дифференцируемой на множестве , если она дифференцируемая в каждой точке этого множества.


Связь понятий "существование частных производных", "непрерывность" и "дифференцируемость" в точке для ФНП иная, чем для функции одной переменной, и может быть изображена в виде
следующей схемы

Рассмотрим соответствующие утверждения, предполагая , , где  – область; .

ТЕОРЕМА (о непрерывности дифференцируемой ФНП)

Если  – дифференцируемая в точке   ФНП, то она
непрерывна в точке .

Доказательство. По определению дифференцируемости ФНП в точке имеем , где .

При , т.е. при , имеем , т.е. , что подтверждает непрерывность ФНП  в точке .

Обратное утверждение неверно для ФНП, поскольку оно неверно для функции одной переменной.

Контрпример: , .


[an error occurred while processing this directive]